

Unit 5

Central Processing Unit

1. Briefly explain General Register Organization:

 When a large number of registers are included in the CPU, it is most efficient to connect them .

through a common bus system.

 The registers communicate with each other not only for direct data transfers, but also while

performing various microoperations. Hence it is necessary to provide a common unit that can

perform all the arithmetic, logic, and shift microoperations in the processor.

 A bus organization for seven CPU registers is shown in Fig. 5-2.

 The output of each register is connected to two multiplexers (MUX) to form the two buses A

and B.

 The selection lines in each multiplexer select one register or the input data for the particular bus.

 Figure 5-2 Register set with common ALU

 The A and B buses form the inputs to a common arithmetic logic unit (ALU).

 The operation selected in the ALU determines the arithmetic or logic microoperation that is to

be performed.

 The result of the microoperation is available for output data and also goes into the inputs of all

the registers.

 The register that receives the information from the output bus is selected by a decoder.

 The decoder activates one of the register load inputs, thus providing a transfer path between the

data in the output bus and the inputs of the selected destination register.

 The control unit that operates the CPU bus system directs the information flow through the

registers and ALU by selecting the various components in the system.

 For example, to perform the operation. R1 ← R2 + R3 the control must provide binary selection

variables to the following selector inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition A + B.

4. Decoder destination selector (SELD): to transfer the content of the output bus into R1.

Table 5.1 Encoding of Register Selection Fields

Binary
Code

SELA SELB SELD

000 Input Input None
001 R1 R1 R1

010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6

R6

R6

111 R7 R7 R7

Table 5.2 Encoding of ALU Operations

OPR
 Select

Operation Symbol

00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A − B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

EXAMPLE OF MICRO OPERATIONS:

 A control word of 14 bits is needed to specify a microoperation in the CPU. The control word

for a given microoperation can be derived from the selection variables.

 For example, the subtract microoperation given by the statement.

R1 ← R2 − R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for the destination

register, and an ALU operation to subtract A − B.

 Thus the control word is specified by the four fields and the corresponding binary value for each

field is obtained from the encoding listed in Tables 5-1 and 5-2.

 The binary control word for the subtract microoperation is 010 011 001 00101 and is obtained as

follows :

Field : SELA SELB SELD OPR

Symbol : R2 R3 R1 SUB

Control word: 010 011 001 00101

Table 5-3 Examples of Microoperations for the CPU

Microoperation SELA SELB SELD OPR Control Word
R1←R2−R3 R2 R3 R1 SUB 010 011 001

00101

R4←R4 ∨ R5 R4 R5 R4 OR 100 101 100 01010

R6←R6 + 1 R6 ⎯ R6 INCA 110 000 110 00001
R7 ← R1 R1 ⎯ R7 TSFA 001 000 111 00000
Output ←R2 R2 ⎯ None TSFA 010 000 000 00000
Output← Input Input ⎯ None TSFA 000 000 000 00000
R4← sh1 R4 R4 ⎯ R4 SHLA 100 000 100 11000
R5 ← 0 R5 R5 R5 XOR 101 101 101 01100

2. What is stack? Give the organization of register stack with all necessary

elements and explain the working of push and pop operations.

 A stack is a storage device that stores information in such a manner that the item stored last is

the first item retrieved.

 The stack in digital computers is essentially a memory unit with an address register that can

count only. The register that holds the address for the stack is called a stack pointer (SP)

because its value always points at the top item in the stack.

 The physical registers of a stack are always available for reading or writing. It is the content of

the word that is inserted or deleted.

Register stack:

Figure 5.1: Block diagram of a 64-word stack

 A stack can be placed in a portion of a large memory or it can be organized as a collection of a

finite number of memory words or registers. Figure shows the organization of a 64-word

register stack.

 The stack pointer register SP contains a binary number whose value is equal to the address of

the word that is currently on top of the stack. Three items are placed in the stack: A, B, and C,

in that order. Item C is on top of the stack so that the content of SP is now 3.

 To remove the top item, the stack is popped by reading the memory word at address 3 and

decrementing the content of SP. Item B is now on top of the stack since SP holds address 2.

 To insert a new item, the stack is pushed by incrementing SP and writing a word in the next-

higher location in the stack.

 In a 64-word stack, the stack pointer contains 6 bits because 26 = 64.

 Since SP has only six bits, it cannot exceed a number greater than 63 (111111 in binary).

When 63 are incremented by 1, the result is 0 since 111111 + 1 = 1000000 in binary, but SP

can accommodate only the six least significant bits.

 Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit register FULL

is set to 1 when the stack is full, and the one-bit register EMTY is set to 1 when the stack is

empty of items.

 DR is the data register that holds the binary data to be written into or read out of the stack.

PUSH:

 If the stack is not full (FULL =0), a new item is inserted with a push operation. The push

operation consists of the following sequences of microoperations:

SP ← SP + 1 Increment stack pointer

M [SP] ← DR WRITE ITEM ON TOP OF THE STACK

IF (SP = 0) then (FULL ← 1) Check if stack is full

EMTY ← 0 Mark the stack not empty

 The stack pointer is incremented so that it points to the address of next-higher word. A

memory write operation inserts the word from DR into the top of the stack.

 SP holds the address of the top of the stack and that M[SP] denotes the memory word

specified by the address presently available in SP.

 The first item stored in the stack is at address 1. The last item is stored at address 0. If SP

reaches 0, the stack is full of items, so FULL is set to 1. This condition is reached if the top

item prior to the last push was in location 63 and, after incrementing SP, the last item is stored

in location 0.

 Once an item is stored in location 0, there are no more empty registers in the stack. If an item

is written in the stack, obviously the stack cannot be empty, so EMTY is cleared to 0.

POP:

 A new item is deleted from the stack if the stack is not empty (if EMTY = 0). The pop

operation consists of the following sequences of microoperations:

DR ← M [SP] Read item on top of the stack

SP ← SP - 1 Decrement stack pointer

IF (SP = 0) then (EMTY ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

 The top item is read from the stack into DR. The stack pointer is then decremented. If its value

reaches zero, the stack is empty, so EMTY is set to 1.

 This condition is reached if the item read was in location 1.

 Once this item is read out, SP is decremented and reaches the value 0, which is the initial

value of SP. If a pop operation reads the item from location 0 and then SP is decremented, SP

is changes to 111111, which is equivalent to decimal 63.

 In this configuration, the word in address 0 receives the last item in the stack. Note also that an

erroneous operation will result if the stack is pushed when FULL = 1 or popped when EMTY

= 1.

3. Explain Memory Stack.

 Figure 5.2: Computer memory with program, data, and stack segments

 The implementation of a stack in the CPU is done by assigning a portion of memory to a stack

operation and using a processor register as a stack pointer.

 Figure 5.2 shows a portion of computer memory partitioned into three segments: program,

data, and stack.

 The program counter PC points at the address of the next instruction in the program which is

used during the fetch phase to read an instruction.

 The address registers AR points at an array of data which is used during the execute phase to

read an operand.

 The stack pointer SP points at the top of the stack which is used to push or pop items into or

from the stack.

 The three registers are connected to a common address bus, and either one can provide an

address for memory.

 As shown in Figure 5.2, the initial value of SP is 4001 and the stack grows with decreasing

addresses. Thus the first item stored in the stack is at address 4000, the second item is stored at

address 3999, and the last address that can be used for the stack is 3000.

 We assume that the items in the stack communicate with a data register DR.

PUSH

 A new item is inserted with the push operation as follows:

SP ← SP - 1

M[SP] ← DR

 The stack pointer is decremented so that it points at the address of the next word.

 A memory write operation inserts the word from DR into the top of the stack.

POP

 A new item is deleted with a pop operation as follows:

DR ← M[SP]

SP ← SP + 1

 The top item is read from the stack into DR.

 The stack pointer is then incremented to point at the next item in the stack.

 The two microoperations needed for either the push or pop are (1) an access to memory through

SP, and (2) updating SP.

 Which of the two microoperations is done first and whether SP is updated by incrementing or

decrementing depends on the organization of the stack.

 In figure. 5.2 the stack grows by decreasing the memory address. The stack may be constructed

to grow by increasing the memory also.

 The advantage of a memory stack is that the CPU can refer to it without having to specify an

address, since the address is always available and automatically updated in the stack pointer.

4. Explain four types of instruction formats.

Three Address Instructions:

 Computers with three-address instruction formats can use each address field to specify either a

processor register or a memory operand.

The program in assembly language that evaluates X = (A + B) * (C + D) is shown below.

ADD R1, A, B R1M [A] + M [B]
ADD R2, C, D R2 M[C] + M [D]

MUL X, R1, R2 M[X] R1 * R2

 The advantage of three-address format is that it results in short programs when evaluating

arithmetic expressions.

 The disadvantage is that the binary-coded instructions require too many bits to specify three

addresses.

 An example of a commercial computer that uses three-address instruction is the Cyber 170.

Two Address Instructions:

 Two address instructions are the most common in commercial computers. Here again each

address field can specify either a processor register or a memory word.

The program to evaluate X = (A + B) * (C + D) is as follows:
MOV R1, A R1 M [A]
ADD R1, B R1 R1 + M [B]
MOV R2, C R2 M [C]
ADD R2, D R2 R2 + M [D]
MUL R1, R2 R1 R1 * R2
MOV X, R1 M [X]R1

 The MOV instruction moves or transfers the operands to and from memory and processor

registers. The first symbol listed in an instruction is assumed to be both a source and the

destination where the result of the operation is transferred.

One Address Instructions:

 One address instructions use an implied accumulator (AC) register for all data manipulation.

For multiplication and division these is a need for a second register.

 However, here we will neglect the second register and assume that the AC contains the result

of all operations. The program to evaluate X = (A + B) * (C + D) is

LOAD A AC M [A]
ADD B AC AC + M [B]
STORE T M [T] AC
LOAD C AC M [C]
ADD D AC AC + M [D]
MUL T AC AC * M [T]
STORE X M [X] AC

 All the operations are done between the AC register and a memory operand. T is the address

of the temporary memory location required for storing the intermediate result.

Zero Address Instructions:

 A stack-organized computer does not use an address field for the instructions ADD and MUL.

The PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack.

 The program to evaluate X = (A + B) * (C + D) will be written for a stack-organized

computer

 PUSH A TOS A

PUSH B TOS B
ADD TOS (A + B)

PUSH C TOS B
PUSH D TOS D
ADD TOS (C + D)

MUL TOS (C + D) * (A + B)
POP X M [X] TOS

 To evaluate arithmetic expressions in a stack computer, it is necessary to convert the

expression into reverse polish notation.

RISC Instructions:

 All other instructions are executed within the registers of the CPU without referring to

memory. A program for a RISC type CPU consists of LOAD and STORE instructions that

have one memory and one register address, and computational-type instructions that have

three addresses with all three specifying processor registers.

 The following is a program to evaluate X = (A + B) * (C + D).

LOAD

LOAD

LOAD
LOAD

R1, A

R1, B

R1, C
R1, D

R1 M [A]

R1 M [B]

R1 M [C]
R1 M [D]

ADD R1, R1, R2 R1 R1 + R2
ADD R3, R3, R2 R3 R3 + R4
MUL R1, R1, R3 R1 R1 * R3
STORE X, R1 M [X] R1

 The load instructions transfer the operands from memory to CPU register.

 Add and multiply operations are executed with data in the registers without accessing memory.

 The result of the computations is then stored in memory with a store instruction.

5. Write a note on different Addressing Modes.

The general addressing modes supported by the computer processor are as follows:

1) Implied mode:

 In this mode the operands are specified implicitly in the definition of the definition of the

instruction. For example, the instruction “complement accumulator” is an implied-mode

instruction because the operand in the accumulator is an implied mode instruction because the

operand in the accumulator register is implied in the definition of the instruction.

 In fact all register later register is implied in the definition of the instruction. In fact, all

register reference instructions that use an accumulator are implied mode instructions.

2) Immediate Mode:

 In this mode the operand is specified in the instruction itself. In other words, an immediate-

mode instruction has an operand field rather than an address field.

 The operand field contains the actual operand to be used in conjunction with the operation

specified in the instruction.

 Immediate mode of instructions is useful for initializing register to constant value.

3) Register Mode:

 In this mode the operands are in registers that within the CPU. The particular register is

selected from a register field in the instruction.

 A k-bit field can specify any one of 2k registers.

4) Register Indirect Mode:

 In this mode the instruction specifies a register in the CPU whose contents give the address of

the operand in memory.

 Before using a register indirect mode instruction, the programmer must ensure that the

memory address of the operand is placed in the processor register with a previous instruction.

 The advantage of this mode is that address field of the instruction uses fewer bits to select a

register than would have been required to specify a memory address directly.

5) Autoincrement or Autodecrement Mode:

 This is similar to the register indirect mode expect that the register is incremented or

decremented after (or before) its value is used to access memory.

 When the address stored in the register refers to a table of data in memory, it is necessary to

increment or decrement the register after every access to the table. This can be achieved by

using the increment or decrement instruction.

6) Direct Address Mode:

 In this mode the effective address is equal to the address part of the instruction. The operand

resides in memory and its address is given directly by the address field of the instruction.

7) Indirect Address Mode:

 In this mode the address field of the instruction gives the address where the effective address

is stored in memory.

 Control fetches the instruction from memory and uses its address part to access memory again

to read the effective address. The effective address in this mode is obtained from the following

computational:

Effective address = address part of instruction + content of CPU register

8) Relative Address Mode:

 In this mode the content of the program counter is added to the address of the instruction in

order to obtain the effective address. The address part of the instruction is usually a signed

number which can be either positive or negative.

 When this number is added to the content of the program counter, the result produces an

effective address whose position in memory is relative to the address of the next instruction.

 Relative addressing is often used with branch-type instruction when the branch address is in

the area surrounding the instruction word itself.

9) Indexed Addressing Mode:

 In this mode the content of an index register is added to the address part of the instruction to

obtain the effective address.

 The indexed register is a special CPU register that contain an index value. The address field of

the instruction defines the beginning address of a data array in memory. Each operand in the

array is stored in memory relative to the begging address.

 The distance between the beginning address and the address of the operand is the index value

stored in the index register.

10) Base Register Addressing Mode:

 In this mode the content of a base register is added to the address part of the instruction to

obtain the effective address.

 A base register is assumed to hold a base address and the address field of the instruction gives

a displacement relative to this base address.

 The base register addressing mode is used in computers to facilitate the relocation of programs

in memory.

 With a base register, the displacement values of instruction do not have to change. Only the

value of the base register requires updating to reflect the beginning of a new memory segment.

6. Explain different types of instructions:

a) Data Transfer Instructions.

 Data transfer instructions move data from one place in the computer to another without

changing the data content.

 The most common transfers are between memory and processor registers, between processor

registers and input or output, and between the processor registers themselves.

 The load instruction has been used mostly to designate a transfer from memory to a processor

register, usually an accumulator.

 The store instruction designates a transfer from a processor register into memory.

 The move instruction has been used in computers with multiple CPU registers to designate a

transfer from one register to another. It has also been used for data transfers between CPU

registers and memory or between two memory words.

 The exchange instruction swaps information between two registers or a register and a memory

word.

 The input and output instructions transfer data among processor registers and input or output

terminals.

 The push and pop instructions transfer data between processor registers and a memory stack.

b) Arithmetic instructions.

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Negate (2's complement) NEG

c) Logical instructions.
Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

d) Shift instructions.

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHR A
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right through carry RORC

Rotate left through carry ROLC

7. What are status register bits? Draw and explain the block diagram showing

all status registers.

 It is sometimes convenient to supplement the ALU circuit in the CPU with a status register

where status bit conditions be stored for further analysis. Status bits are also called condition-

code bits or flag bits.

 Figure 5.3 shows the block diagram of an 8-bit ALU with a 4-bit status register. The four

status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an

operation performed in the ALU.

Figure 5.3: Status Register Bits

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if set to 0 if the bit is

0.
3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. it is cleared to 0

otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the output is not zero.
4. Bit V (overflow) is set to 1 if the exclusives-OR of the last two carries is equal to 1,

and cleared to 0 otherwise. This is the condition for an overflow when negative

numbers are in 2’s complement. For the 8-bit ALU, V = 1 if the output is greater than

+ 127 or less than -128.

 The status bits can be checked after an ALU operation to determine certain relationships that

exist between the vales of A and B.

 If bit V is set after the addition of two signed numbers, it indicates an overflow condition.

 If Z is set after an exclusive-OR operation, it indicates that A = B.

 A single bit in A can be checked to determine if it is 0 or 1 by masking all bits except the bit in

question and then checking the Z status bit.

8. What is program interrupt? What happens when it comes? What are the

tasks to be performed by service routine?

 The concept of program interrupt is used to handle a variety of problems that arise out of

normal program sequence.

 Program interrupt refers to the transfer of program control from a currently running program

to another service program as a result of an external or internal generated request. Control

returns to the original program after the service program is executed.

 After a program has been interrupted and the service routine been executed, the CPU must

return to exactly the same state that it was when the interrupt occurred.

 Only if this happens will the interrupted program be able to resume exactly as if nothing had

happened.

 The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is

determined from:

1. The content of the program counter

2. The content of all processor registers

3. The content of certain status conditions

 The interrupt facility allows the running program to proceed until the input or output device

sets its ready flag. Whenever a flag is set to 1, the computer completes the execution of the

instruction in progress and then acknowledges the interrupt.

 The result of this action is that the retune address is stared in location 0. The instruction in

location 1 is then performed; this initiates a service routine for the input or output transfer. The

service routine can be stored in location 1.

 The service routine must have instructions to perform the following tasks:

1. Save contents of processor registers.

2. Check which flag is set.

3. Service the device whose flag is set.

4. Restore contents of processor registers.

5. Turn the interrupt facility on.

6. Return to the running program.

9. Explain various types of interrupts.

There are three major types of interrupts that cause a break in the normal execution of a

program. They can be classified as:

1. External interrupts

2. Internal interrupts

3. Software interrupts

1) External interrupts:

 External interrupts come from input-output (I/0) devices, from a timing device, from a

circuit monitoring the power supply, or from any other external source.

 Examples that cause external interrupts are I/0 device requesting transfer of data, I/o

device finished transfer of data, elapsed time of an event, or power failure. Timeout

interrupt may result from a program that is in an endless loop and thus exceeded its

time allocation.

 Power failure interrupt may have as its service routine a program that transfers the

complete state of the CPU into a nondestructive memory in the few milliseconds

before power ceases.

 External interrupts are asynchronous. External interrupts depend on external

conditions that are independent of the program being executed at the time.

2) Internal interrupts:

 Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal

interrupts are also called traps.

 Examples of interrupts caused by internal error conditions are register overflow,

attempt to divide by zero, an invalid operation code, stack overflow, and protection

violation. These error conditions usually occur as a result of a premature termination

of the instruction execution. The service program that processes the internal interrupt

determines the corrective measure to be taken.

 Internal interrupts are synchronous with the program. . If the program is rerun, the

internal interrupts will occur in the same place each time.

3) Software interrupts:

 A software interrupt is a special call instruction that behaves like an interrupt rather

than a subroutine call. It can be used by the programmer to initiate an interrupt

procedure at any desired point in the program.

 The most common use of software interrupt is associated with a supervisor call

instruction. This instruction provides means for switching from a CPU user mode to

the supervisor mode. Certain operations in the computer may be assigned to the

supervisor mode only, as for example, a complex input or output transfer procedure. A

program written by a user must run in the user mode.

 When an input or output transfer is required, the supervisor mode is requested by

means of a supervisor call instruction. This instruction causes a software interrupt that

stores the old CPU state and brings in a new PSW that belongs to the supervisor mode.

 The calling program must pass information to the operating system in order to specify

the particular task requested.

10. What do you understand by Reduced Instruction Set Computers? What are

Complex Instruction Set Computers? List important characteristics of CISC

and RISC computers.

Characteristics of RISC:

1. Relatively few instructions

2. Relatively few addressing modes

3. Memory access limited to load and store instructions

4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format

6. Single-cycle instruction execution

7. Hardwired rather than microprogrammed control

8. A relatively large number of registers in the processor unit

9. Use of overlapped register windows to speed-up procedure call and return

10. Efficient instruction pipeline

11. Compiler support for efficient translation of high-level language programs into machine

language programs

Characteristics of CISC:

1. A larger number of instructions – typically from 100 to 250 instructions

2. Some instructions that perform specialized tasks and are used infrequently
3. A large variety of addressing modes – typically from 5 to 20 different modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory

11. Explain Reverse Polish Notation (RPN) with appropriate example.

 The postfix RPN notation, referred to as Reverse Polish Notation (RPN), places the operator

after the operands.

 The following examples demonstrate the three representations:

A + B Infix notation

+ A B Prefix or Polish notation

A B + Postfix or reverse Polish notation

 The reverse Polish notation is in a form suitable for stack manipulation. The

expression

A * B + C * D is written in reverse Polish notation

as A B * C D * +

 The conversion from infix notation to reverse Polish notation must take into consideration the

operational hierarchy adopted for infix notation.

 This hierarchy dictates that we first perform all arithmetic inside inner parentheses, then inside

outer parentheses, and do multiplication and division operations before addition and

subtraction operations.

Evaluation of Arithmetic Expressions

 Any arithmetic expression can be expressed in parenthesis-free Polish notation, including

reverse Polish notation

(3 * 4) + (5 * 6) 3 4 * 5 6 * +

12. Explain Flynn’s classification for computers.

 Flynn's classification

 It is based on the multiplicity of Instruction Streams and Data Streams

Instruction Stream: Sequence of Instructions read from memory

Data Stream: Operations performed on the data in the processor

 Figure 6.1: Flynn’s Classification

SISD:

 Single instruction stream, single data stream.
 SISD represents the organization of a single computer containing a control unit, a processor

unit, and a memory unit.

 Instructions are executed sequentially and the system may or may not have internal parallel

processing capabilities.

 Figure 6.2: SISD Organization

SIMD:

 SIMD represents an organization that includes many processing units under the supervision

of a common control unit.

 All processors receive the same instruction from the control unit but operate on different

items of data

 Figure 6.3: SIMD Organization

MISD:

 There is no computer at present that can be classified as MISD.

 MISD structure is only of theoretical interest since no practical system has been constructed

using this organization.

MIMD:

 MIMD organization refers to a computer system capable of processing several programs at

the same time.

 Most multiprocessor and multicomputer systems can be classified in this category.

 Contains multiple processing units.

 Execution of multiple instructions on multiple data.

 Figure 6.4: MIMD Organization

13. Explain pipelining technique. Draw the general structure of four segment

pipeline.

 Pipeline is a technique of decomposing a sequential process into sub operations, with each

sub process being executed in a special dedicated segment that operates concurrently with all

other segments.

 A pipeline can be visualized as a collection of processing segments through which binary

information flows.

 Each segment performs partial processing dictated by the way the task is partitioned.

 The result obtained from the computation in each segment is transferred to the next segment

in the pipeline.

 It is characteristic of pipelines that several computations can be in progress in distinct

segments at the same time.

 The overlapping of computation is made possible by associating a register with each

segment in the pipeline.

 The registers provide isolation between each segment so that each can operate on distinct

data simultaneously.

 Any operation that can be decomposed into a sequence of sub operations of about the same

complexity can be implemented by a pipeline processor.

 The technique is efficient for those applications that need to repeat the same task many times

with different sets of data.

 The general structure of a four-segment pipeline is illustrated in Figure 6.5.

Figure 6.5: General Structure of Four-Segment Pipeline

 The operands pass through all four segments in a fixed sequence.

 Each segment consists of a combinational circuit S, which performs a sub operation over the

data stream flowing through the pipe.

 The segments are separated by registers R, which hold the intermediate results between the

stages.

 Information flows between adjacent stages under the control of a common clock applied to all

the registers simultaneously.

 We define a task as the total operation performed going through all the segments in the

pipeline.

14. Draw and explain Arithmetic Pipeline.

 The inputs to the floating-point adder pipeline are two normalized floating-point binary

numbers.

X = A x2a

Y = B x2b

Figure 6.6: Pipeline for floating-point addition and subtraction

 A and B are two fractions that represent the mantissas and a and b are the exponents.

 The floating-point addition and subtraction can be performed in four segments, as shown in

Figure 6.6.

 The registers labeled R are placed between the segments to store intermediate results.

 The sub-operations that are performed in the four segments are:
1. Compare the exponents

2. Align the mantissas

3. Add or subtract the mantissas

4. Normalize the result

 The following numerical example may clarify the sub-operations performed in each

segment.

 For simplicity, we use decimal numbers, although Figure 6.6 refers to binary numbers.

 Consider the two normalized floating-point numbers: X = 0.9504 x 103

Y = 0.8200 x 102

 The two exponents are subtracted in the first segment to obtain 3 - 2 = 1.

 The larger exponent 3 is chosen as the exponent of the result.

 The next segment shifts the mantissa of Y to the right to obtain X = 0.9504 x 103
Y = 0.0820 x 103

 This aligns the two mantissas under the same exponent. The addition of the two mantissas in

segment 3 produces the sum

Z = 1.0324 x 103

15. Explain the Instruction Pipelining with example.

 Pipeline processing can occur in data stream as well as in instruction stream.

 An instruction pipeline reads consecutive instructions from memory while previous

instructions are being executed in other segments.

 This causes the instruction fetch and executes phases to overlap and perform simultaneous

operations.

 One possible digression associated with such a scheme is that an instruction may cause a

branch out of sequence.

 In that case the pipeline must be emptied and all the instructions that have been read from

memory after the branch instruction must be discarded.

 Consider a computer with an instruction fetch unit and an instruction execution unit designed

to provide a two-segment pipeline.

 The instruction fetch segment can be implemented by means of a first-in, first-out (FIFO)

buffer.

 The buffer acts as a queue from which control then extracts the instructions for the execution

unit.

Instruction cycle:

 The fetch and execute to process an instruction completely.

 In the most general case, the computer needs to process each instruction with the following

sequence of steps:
1. Fetch the instruction from memory.
2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

 There are certain difficulties that will prevent the instruction pipeline from operating at its

maximum rate.

 Different segments may take different times to operate on the incoming information.

 Some segments are skipped for certain operations.

 The design of an instruction pipeline will be most efficient if the instruction cycle is divided

into segments of equal duration.

 The time that each step takes to fulfill its function depends on the instruction and the way it

is executed.

Example: Four-Segment Instruction Pipeline

 Assume that the decoding of the instruction can be combined with the calculation of the

effective address into one segment.

 Assume further that most of the instructions place the result into a processor registers so that

the instruction execution and storing of the result can be combined into one segment.

 This reduces the instruction pipeline into four segments.

1. FI: Fetch an instruction from memory

2. DA: Decode the instruction and calculate the effective address of the operand

3. FO: Fetch the operand

4. EX: Execute the operation

 Figure 6.7 shows, how the instruction cycle in the CPU can be processed with a four-

segment pipeline.

 Figure 6.7: Four-segment CPU pipeline

 While an instruction is being executed in segment 4, the next instruction in sequence is busy

fetching an operand from memory in segment 3.

 The effective address may be calculated in a separate arithmetic circuit for the third

instruction, and whenever the memory is available, the fourth and all subsequent instructions

can be fetched and placed in an instruction FIFO.

 Thus up to four sub operations in the instruction cycle can overlap and up to four different

instructions can be in progress of being processed at the same time.

 Figure 6.8 shows the operation of the instruction pipeline. The time in the horizontal axis is

divided into steps of equal duration. The four segments are represented in the diagram with

an abbreviated symbol.

Figure 6.8: Timing of Instruction Pipeline

 It is assumed that the processor has separate instruction and data memories so that the

operation in FI and FO can proceed at the same time.

 Thus, in step 4, instruction 1 is being executed in segment EX; the operand for instruction 2

is being fetched in segment FO; instruction 3 is being decoded in segment DA; and

instruction 4 is being fetched from memory in segment FI.

 Assume now that instruction 3 is a branch instruction.

 As soon as this instruction is decoded in segment DA in step 4, the transfer from FI to DA

of the other instructions is halted until the branch instruction is executed in step 6.

 If the branch is taken, a new instruction is fetched in step 7. If the branch is not taken, the

instruction fetched previously in step 4 can be used.

 The pipeline then continues until a new branch instruction is encountered.

 Another delay may occur in the pipeline if the EX segment needs to store the result of the

operation in the data memory while the FO segment needs to fetch an operand.

 In that case, segment FO must wait until segment EX has finished its operation.

16. What is pipeline conflict? Explain data dependency and handling of

branch instruction in detail.

Pipeline conflict:

There are three major difficulties that cause the instruction pipeline conflicts.

 Resource conflicts caused by access to memory by two segments at the same time.

 Data dependency conflicts arise when an instruction depends on the result of a previous

instruction, but this result is not yet available.

 Branch difficulties arise from branch and other instructions that change the value of PC.

Data Dependency:

 A collision occurs when an instruction cannot proceed because previous instructions did not

complete certain operations.

 A data dependency occurs when an instruction needs data that are not yet available.

 Similarly, an address dependency may occur when an operand address cannot be calculated

because the information needed by the addressing mode is not available.

 Pipelined computers deal with such conflicts between data dependencies in a variety of ways

as follows.

Hardware interlocks:

 An interlock is a circuit that detects instructions whose source operands are destinations of

instructions farther up in the pipeline.

 Detection of this situation causes the instruction whose source is not available to be delayed

by enough clock cycles to resolve the conflict.

 This approach maintains the program sequence by using hardware to insert the required

delays.

Operand forwarding:

 It uses special hardware to detect a conflict and then avoid it by routing the data through

special paths between pipeline segments.

 This method requires additional hardware paths through multiplexers as well as the circuit

that detects the conflict.

Delayed load:

 Sometimes compiler has the responsibility for solving data conflicts problems.

 The compiler for such computers is designed to detect a data conflict and reorder the

instructions as necessary to delay the loading of the conflicting data by inserting no- operation

instruction, this method is called delayed load.

Handling of Branch Instructions:
 One of the major problems in operating an instruction pipeline is the occurrence of branch

instructions.

 A branch instruction can be conditional or unconditional.

 The branch instruction breaks the normal sequence of the instruction stream, causing

difficulties in the operation of the instruction pipeline.

 Various hardware techniques are available to minimize the performance degradation caused

by instruction branching.

Pre-fetch target:

 One way of handling a conditional branch is to prefetch the target instruction in addition to

the instruction following the branch.

 If the branch condition is successful, the pipeline continues from the branch target

instruction.

 An extension of this procedure is to continue fetching instructions from both places until the

branch decision is made.

Branch target buffer:

 Another possibility is the use of a branch target buffer or BTB.

 The BTB is an associative memory included in the fetch segment of the pipeline.

 Each entry in the BTB consists of the address of a previously executed branch instruction and

the target instruction for that branch.

 It also stores the next few instructions after the branch target instruction.

 The advantage of this scheme is that branch instructions that have occurred previously are

readily available in the pipeline without interruption.

Loop buffer:

 A variation of the BTB is the loop buffer. This is a small very high speed register file

maintained by the instruction fetch segment of the pipeline.

 When a program loop is detected in the program, it is stored in the loop buffer in its entirety,

including all branches.

Branch Prediction:

 A pipeline with branch prediction uses some additional logic to guess the outcome of a

conditional branch instruction before it is executed.

 The pipeline then begins pre-fetching the instruction stream from the predicted path.

 A correct prediction eliminates the wasted time caused by branch penalties

Delayed branch:

 A procedure employed in most RISC processors is the delayed branch.

 In this procedure, the compiler detects the branch instructions and rearranges the machine

language code sequence by inserting useful instructions that keep the pipeline operating

without interruptions.

17. Explain (i) Vector Processing (ii) Vector Operations.

Vector Processing

 There is a class of computational problems that are beyond the capabilities of a conventional

computer.

 These problems are characterized by the fact that they require a vast number of

computations that will take a conventional computer days or even weeks to complete.

 In many science and engineering applications, the problems can be formulated in terms of

vectors and matrices that lend themselves to vector processing.

Applications of Vector processing

 Long-range weather forecasting

 Petroleum explorations

 Seismic data analysis

 Medical diagnosis

 Aerodynamics and space flight simulations

 Artificial intelligence and expert systems

 Mapping the human genome

 Image processing

Vector Operations

 Many scientific problems require arithmetic operations on large arrays of numbers.

 These numbers are usually formulated as vectors and matrices of floating-point numbers.

 A vector is an ordered set of a one-dimensional array of data items.

 A vector V of length n is represented as a row vector by V = [V1 V2 V3 … Vn] that may be

represented as a column vector if the data items are listed in a column.

 A conventional sequential computer is capable of processing operands one at a time.

 Consequently, operations on vectors must be broken down into single computations with

subscripted variables.

 The element of vector V is written as V(I) and the index I refers to a memory address or

register where the number is stored.

18. What is an array processor? Explain the different types of array

processor.

 An array processor is a processor that performs computations on large arrays of data.

 The term is used to refer to two different types of processors, attached array processor and

SIMD array processor.

 An attached array processor is an auxiliary processor attached to a general-purpose computer.

 It is intended to improve the performance of the host computer in specific numerical

computation tasks.

 An SIMD array processor is a processor that has a single-instruction multiple-data

organization.

 It manipulates vector instructions by means of multiple functional units responding to a

common instruction.

Attached Array Processor

 An attached array processor is designed as a peripheral for a conventional host computer,

and its purpose is to enhance the performance of the computer by providing vector

processing for complex scientific applications.

 It achieves high performance by means of parallel processing with multiple functional units.

 It includes an arithmetic unit containing one or more pipelined floating-point adders and

multipliers.

 The array processor can be programmed by the user to accommodate a variety of complex

arithmetic problems.

 Figure 6.11 shows the interconnection of an attached array processor to host computer.

Figure 6.11: Attached array processor with host computer.

 The host computer is a general-purpose commercial computer and the attached processor is a

back-end machine driven by the host computer.

 The array processor is connected through an input-output controller to the computer and the

computer treats it like an external interface.

 The data for the attached processor are transferred from main memory to a local memory

through a high-speed bus.

 The general-purpose computer without the attached processor serves the users that need

conventional data processing.

 The system with the attached processor satisfies the needs for complex arithmetic

applications.

SIMD Array Processor

 An SIMD array processor is a computer with multiple processing units operating in

parallel.

 The processing units are synchronized to perform the same operation under the control

of a common control unit, thus providing a single instruction stream, multiple data

stream (SIMD) organization.

 A general block diagram of an array processor is shown in Figure 6.12

 Figure 6.12: SIMD array processor organization

 It contains a set of identical processing elements (PEs), each having a local memory M.

 Each processor element includes an ALU, a floating-point arithmetic unit and working

registers.

 The master control unit controls the operations in the processor elements.

 The main memory is used for storage of the program.

 The function of the master control unit is to decode the instructions and determine how the

instruction is to be executed.

 Scalar and program control instructions are directly executed within the master control unit.

 Vector instructions are broadcast to all PEs simultaneously.

 Vector operands are distributed to the local memories prior to the parallel execution of the

instruction.

 Masking schemes are used to control the status of each PE during the execution of vector

instructions.

 Each PE has a flag that is set when the PE is active and reset when the PE is inactive.

 This ensures that only that PE’S that needs to participate is active during the execution of the

instruction.

 SIMD processors are highly specialized computers.

 They are suited primarily for numerical problems that can be expressed in vector matrix form.

 However, they are not very efficient in other types of computations or in dealing with

conventional data-processing programs.

	Register stack:
	PUSH:
	POP:
	PUSH
	POP
	Three Address Instructions:
	Two Address Instructions:
	One Address Instructions:
	Zero Address Instructions:
	RISC Instructions:
	5. Write a note on different Addressing Modes.
	1) Implied mode:
	2) Immediate Mode:
	3) Register Mode:
	4) Register Indirect Mode:
	5) Autoincrement or Autodecrement Mode:
	6) Direct Address Mode:
	7) Indirect Address Mode:
	8) Relative Address Mode:
	9) Indexed Addressing Mode:
	10) Base Register Addressing Mode:

	6. Explain different types of instructions:
	a) Data Transfer Instructions.
	b) Arithmetic instructions.
	8. What is program interrupt? What happens when it comes? What are the tasks to be performed by service routine?
	9. Explain various types of interrupts.
	1) External interrupts:
	2) Internal interrupts:
	3) Software interrupts:

	Characteristics of RISC:
	Characteristics of CISC:

	11. Explain Reverse Polish Notation (RPN) with appropriate example.
	Evaluation of Arithmetic Expressions

	12. Explain Flynn’s classification for computers.
	Flynn's classification
	Instruction Stream: Sequence of Instructions read from memory
	Data Stream: Operations performed on the data in the processor

	SISD:
	SIMD:
	MISD:
	MIMD:

	14. Draw and explain Arithmetic Pipeline.
	15. Explain the Instruction Pipelining with example.
	Example: Four-Segment Instruction Pipeline

	16. What is pipeline conflict? Explain data dependency and handling of branch instruction in detail.
	Pipeline conflict:
	Data Dependency:
	Hardware interlocks:
	Operand forwarding:
	Delayed load:

	Handling of Branch Instructions:
	Pre-fetch target:
	Branch target buffer:
	Loop buffer:
	Branch Prediction:
	Delayed branch:

	17. Explain (i) Vector Processing (ii) Vector Operations.
	Vector Processing
	Applications of Vector processing

	18. What is an array processor? Explain the different types of array processor.
	Attached Array Processor
	SIMD Array Processor

